
846 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 7, JULY 1981

Substantiating Programmer Variability Substantial variations in programmer performance can be attributed
to individual differences in experience, motivation, intelligence, etc.
Thus, important productivity gains could be realized through improved BILL CURTIS

Abmct-Dickey’s critique of the Sackmrn et d. data is well taken.
An alterme data set ia presented which substantiates the mormous
nrinbility in programmer perfornuuce. The opportunity for produc-
tivity gains and improved experimental methods in tgeuch throua
reducingthermgeofthisvuiabitityremainsfertile.

I agree with most of Dickey’s [2] comments on the Sackman et 01.
[4] paper. Although the Sackman et d. data are not definitive in ar-
guing 20+:1 differences in performance among programmers, other sets
of data exist which display such ranges. Below are data my colleagues
at GE and I collected two years ago on 54 professional programmers
from both military and civilian environments. These data are from the
pretest conducted with Experiment 3 (Debugging) reported by Shep
pard et d. [SI. On this pretest, the programmers were given a modular-
sized Fortran program with a simple bug embedded in it. We measured
the amount of time they required to find and correct the bug. The first
27 programmers were given a program which was found to be too diffi-
cult for the purpose of the pretest, so a different program was given to
the second 27. The 27 programmers attempting each program were
confronted with an identical task, and performance differences could
be attributed directly to differences among programmers in talent, ex-
perience, etc. Table I presents distributions of debugging times for each
of these two programs.

TABLE I

Frequency

Minutes Program 1 Program 2
~~

1 - 5
6 - 1 0

1 1 - 1 5
1 6 - 2 0

~.

2 1 - 2 5
2 6 - 3 0

3 6 - 4 0
3 1 - 3 5

4 1 - 4 5
4 6 - 5 0

. 5 1 - 5 5
5 6 - 6 0

6 6 - 7 0
6 1 - 6 5

Range

5
5

10
7 4
4
1
1

3
1

3
3
2

3

1

1

6 - 4 7 3 - 6 7

Although the range of performance scores for Rogram 1 is only about
8: 1, the range for Rogram 2 is about 22: 1. This range is not entirely
accurate since the unfortunate programmer who spent 67 minutes on
this task quit in frustration without discovering the bug. This program-
mer was not incompetent, however, since he was able to debug the 3
programs involved in the experimental manipulations. Data for 6 other
professional programmers involved in this experiment were deleted, since
they were unable to debug either the pretest or the experimental pro-
grams. In this case exact ratios are not meaningful, but a statement
such as “order of magnitude differences in the performance of individ-
ual programmers” seems justified. For instance, etiminating the data-
point for 67 minutes from the distribution of times for Program 2
reduced the range ratio to a mere 13: 1 (2 programmers required 39
minutes to find the bug).

Sackman’s [3] message that substantial performance differences do
exist among programmers remains valid. Detecting a 20+: 1 range ratio
depends upon having one brilliant and one horrid performance in a
sample. However, the range ratio is not a particularly stable measure of
performance variability among programmers. The dispersions of such
data as appear in Table I are better represented by such measures as the
standard deviation or semiinterquartile range.

Manuscript received December 8, 1980.
The author is with the Rogramming Technology Center, International

Telephone and Telegraph, Stratford, CT.

programmer selection, development, and training techniques. -These
gains would be achieved through elimiuating the skewed tails often o b
served in distributions of programmer performance data. For example,
with continued experience on the task the programmer who spent 67
minutes on our pretest improved his performance substantially during
later experimental trials.

The gist of my citation [l] of the Sackman et ul. paper was that
differences among programmers are often of sufficient magnitude to
disguise performance effects due to software characteristics or practices.
I continue to wrestle with this problem in experimental research.

REP~RENCE~

neering,” Roc. IEEE.,vol. 68, pp. 1144-1157,Sept. 1980.
111 B. Curtis, “Measurement and experimentation in software engi-

[2] T. E. Dickey, “Programmer variability,” this issue, pp. 844-846.
[3] H. Sackman, Mun-Computer Problem Solving. New York: Auer-

bach, 1970.
[4] H. Sackman, W. J. Erichon, and E. E. Grant, “Exploratory experi-

mental studies comparing online and offline programming perfor-
mance,” Commun hoc. Comput Much., vol. 11, pp. 3-11,
1968.

[5] S. B. Sheppard, B. Curtis, P. Milliman, and T. Love, “Modem cod-
ing practices and programmer performance,” Comput., vol. 12,
no. 12, pp. 41-49, 1979.

Cascade Configurations for Recursive-Like
Adaptive Noise Cancellation

W. A. GARDNER

Abstmct-Two novel recursivelike t w e s t a g e adaptive noise cancellers
that circumvent the requirement, in prior art onestage recunive-like
cancellers, of incorporating a constraint on filter coeffients, are pre-
sented. These novel two-stage cancellers are based on a cascade config-
uration, rather than the prior art parallel confiiratioa For applications
m which even a small amount of signal distortion is intolerable, a third
novel two-stage noise candler that guarantees distortion-free perfor-
mance is presented. Finally, a multistage cascade configuration that has
the potential for distortion-free, h*-perfonnance noise c d t i o n is
presented.

As explained in [11, constraints imposed on filter COeMiclents m the
recursivelike noisecanceller shown in Fig. 1 can prevent convergence
to the best attainable noise canceller. These constraints, which are im-
posed m order to prevent convergence to the trivial solution @
0, can be eliminated if the configuration shown in Fig. 1 is mo&e?g
that 3 and 3 are not connected m p d e L

One such modifcation is shown in Fig. 2. In principle, complete noise
cancellation would occur if 3 were equal to the denominator of the
transfer function H / G , and 3 were equal to the numerator. However,
in practice, when aP and 3 are adaptively adjusted (with the LMS algo-
rithm, for example), a, will attempt to approximate the entire rational
function H / G , rather than only its denominator (and similarly for 3).
Nevertheless this configuration has the potential for outperforming the
conventional singtestage canceller, which consists of only the first stage
in Fig. 2.

As an alternative the order of the two stages can be reversed as shown
in Fig. 3.

the Air Force Office of Scientific Research under Grant AFOSR80-0189.
Manuscript received January 26, 1981. This work was supported by

partment of Electrical and Computer Engineering, University of Cali-
The author is with the Signal and Image Processing Laboratory, De-

fornia, Davis, CA 95616.

